

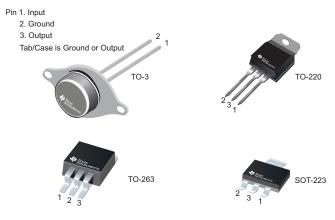
Sample &

Buy

LM340, LM340A, LM7805, LM7812, LM7815

SNOSBTOK-FEBRUARY 2000-REVISED JULY 2016

LM340, LM340A and LM78xx Wide V_{IN} 1.5-A Fixed Voltage Regulators


1 Features

- Output Current up to 1.5 A
- Available in Fixed 5-V, 12-V, and 15-V Options
- Output Voltage Tolerances of ±2% at T_J = 25°C (LM340A)
- Line Regulation of 0.01% / V of at 1-A Load (LM340A)
- Load Regulation of 0.3% / A (LM340A)
- Internal Thermal Overload, Short-Circuit and SOA
 Protection
- Available in Space-Saving SOT-223 Package
- · Output Capacitance Not Required for Stability

2 Applications

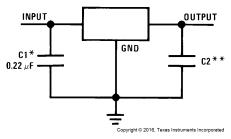
- Industrial Power Supplies
- SMPS Post Regulation
- HVAC Systems
- White Goods

Available Packages

3 Description

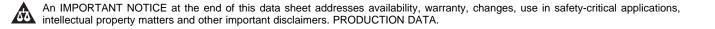
The LM340 and LM78xx monolithic 3-terminal positive voltage regulators employ internal currentshutdown limiting, thermal and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1.5-A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.


LM7805 is also available in a higher accuracy and better performance version (LM340A). Refer to LM340A specifications in the *LM340A Electrical Characterisitcs* table.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
LM340x	DDPAK/TO-263 (3)	10.18 mm × 8.41 mm		
	SOT-23 (4)	6.50 mm × 3.50 mm		
LM78xx	TO-220 (3)	14.986 mm × 10.16 mm		
	TO-3 (2)	38.94 mm x 25.40 mm		


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Fixed Output Voltage Regulator

*Required if the regulator is located far from the power supply filter.

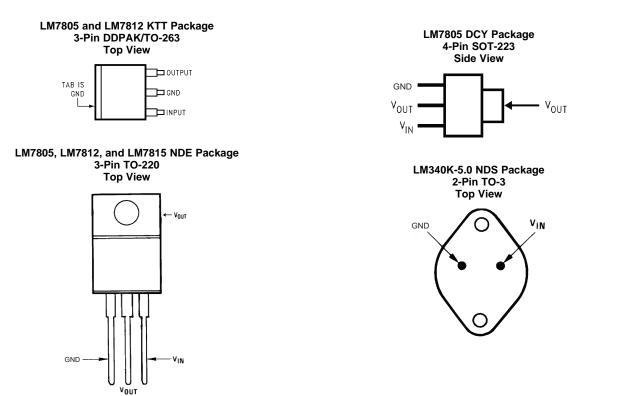
**Although no output capacitor is needed for stability, it does help transient response. (If needed, use $0.1-\mu F$, ceramic disc).

Table of Contents

1 2	Features
3	Description 1
4	Revision History 2
5	Pin Configuration and Functions 3
6	Specifications 4
	6.1 Absolute Maximum Ratings 4
	6.2 ESD Ratings 4
	6.3 Recommended Operating Conditions 4
	6.4 Thermal Information 4
	6.5 LM340A Electrical Characteristics,
	$V_0 = 5 V, V_1 = 10 V5$
	6.6 LM340 / LM7805 Electrical Characteristics,
	$V_0 = 5 V, V_1 = 10 V6$
	6.7 LM340 / LM7812 Electrical Characteristics,
	$V_0 = 12 V, V_1 = 19 V7$
	6.8 LM340 / LM7815 Electrical Characteristics,
	V _O = 15 V, V _I = 23 V
	6.9 Typical Characteristics 9
7	Detailed Description 12
	7.1 Overview 12
	7.2 Functional Block Diagram 12

	7.3	Feature Description	12
	7.4	Device Functional Modes	12
8	App	lication and Implementation	13
	8.1	Application Information	13
	8.2	Typical Applications	14
	8.3	System Examples	15
9	Pow	er Supply Recommendations	17
10		out	
	10.1		
	10.2	Layout Example	17
	10.3	Heat Sinking DDPAK/TO-263 and SOT-223	
		Package Parts	18
11	Dev	ice and Documentation Support	20
	11.1	Documentation Support	20
	11.2	Related Links	20
	11.3	Receiving Notification of Documentation Updates	20
	11.4	Community Resources	20
	11.5	Trademarks	20
	11.6	Electrostatic Discharge Caution	20
	11.7	Glossary	20
12	Мес	hanical, Packaging, and Orderable	
	Info	mation	21

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision J (December 2013) to Revision K	Page
•	Added ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Deleted obsolete LM140 and LM7808C devices from the data sheet	1
•	Changed Figure 13 caption from Line Regulation 140AK-5.0 to Line Regulation LM340,	11
•	Changed Figure 14 caption from Line Regulation 140AK-5.0 to Line Regulation LM340,	11
Cł	nanges from Revision I (March 2013) to Revision J	Page

2

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION		
NAME	NO.	1/0	D DESCRIPTION		
INPUT	1	I	ıt voltage pin		
GND	2	I/O	Ground pin		
OUTPUT	3	0	Output voltage pin		

SNOSBTOK-FEBRUARY 2000-REVISED JULY 2016

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
DC input voltage			35	V
Internal power dissipation ⁽³⁾		Internally	Limited	
Maximum junction temperature			150	°C
	TO-3 package (NDS)		300	°C
Lead temperature (soldering, 10 sec.)	Lead temperature 1,6 mm (1/16 in) from case for 10 s		230	°C
Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) The maximum allowable power dissipation at any ambient temperature is a function of the maximum junction temperature for operation (T_{JMAX} = 125°C or 150°C), the junction-to-ambient thermal resistance (θ_{JA}), and the ambient temperature (T_A). P_{DMAX} = (T_{JMAX} T_A)/θ_{JA}. If this dissipation is exceeded, the die temperature rises above T_{JMAX} and the electrical specifications do not apply. If the die temperature rises above 150°C, the device goes into thermal shutdown. For the TO-3 package (NDS), the junction-to-ambient thermal resistance (θ_{JA}) is 39°C/W. When using a heat sink, θ_{JA} is the sum of the 4°C/W junction-to-case thermal resistance (θ_{JC}) of the TO-3 package and the case-to-ambient thermal resistance of the heat sink. For the TO-20 package (NDE), θ_{JA} is 54°C/W and θ_{JC} is 4°C/W. If SOT-223 is used, the junction-to-ambient thermal resistance is 174°C/W and can be reduced by a heat sink (see Applications Hints on heat sinking). If the DDPAK\TO-263 package is used, the thermal resistance can be reduced by increasing the PCB copper area thermally connected to the package: Using 0.5 square inches of copper area, θ_{JA} is 50°C/W; with 1 square inch of copper area, θ_{JA} is 37°C/W; and with 1.6 or more inches of copper area, θ_{JA} is 32°C/W.

6.2 ESD Ratings

		VALUE	UNIT	
V _(ESD) Electrostatic discharge	Human-body model (HBM) ⁽¹⁾	±2000	V	ĺ

(1) ESD rating is based on the human-body model, 100 pF discharged through 1.5 k Ω .

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Temperature (T _A)	LM340A, LM340	0	125	°C

6.4 Thermal Information

			LM340, LM	78xx		
	THERMAL METRIC ⁽¹⁾	NDE (TO-220)	KTT (DDPAK/TO-263)	DCY (SOT-223)	NDS (TO-3)	UNIT
		3 PINS	3 PINS	4 PINS	2 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	23.9	44.8	62.1	39	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	16.7	45.6	44	2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	5.3	24.4	10.7	_	°C/W
ΨJT	Junction-to-top characterization parameter	3.2	11.2	2.7	_	°C/W
ΨJB	Junction-to-board characterization parameter	5.3	23.4	10.6	_	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	1.7	1.5	—	—	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.

4

www.ti.com

6.5 LM340A Electrical Characteristics,

 $V_{o} = 5 V, V_{I} = 10 V$

 I_{OUT} = 1 A, 0°C ≤ T_J ≤ 125°C (LM340A) unless otherwise specified⁽¹⁾

	PARAMETER	т	EST CONDITIONS	MIN	TYP	MAX	UNIT
		$T_J = 25^{\circ}C$		4.9	5	5.1	V
Vo	Output voltage	P _D ≤ 15 W, 5 mA	≤ I _O ≤ 1 A	4.8		5.2	
		$7.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 20$	V				V
		$7.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 20$	T _J = 25°C		3	10	mV
		V	Over temperature, $I_0 = 500 \text{ mA}$			10	mV
ΔV_O	Line regulation		T _J = 25°C			4	mV
		8 V ≤ V _{IN} ≤ 12 V	Over temperature			12	mV
		т осно	5 mA ≤ I _O ≤ 1.5 A		10	25	mV
ΔV_O	Load regulation	$T_J = 25^{\circ}C$	250 mA ≤ I _O ≤ 750 mA			15	mV
		Over temperature	, 5 mA ≤ I _O ≤ 1 A			25	mV
		$T_J = 25^{\circ}C$				6	mA
l _Q	Quiescent current	Over temperature				6.5	mA
	Quiescent current change	$T_{\rm J} = 25^{\circ}C, I_{\rm O} = 1 \text{ A}$				0.8	
		$7.5 \text{ V} \leq \text{V}_{IN} \leq 20 \text{ V}$					mA
Δl _Q		Over temperature	, 5 mA ≤ I _O ≤ 1 A			0.5	mA
		Over temperature, I _O = 500 mA				0.8	
		$8 \text{ V} \leq \text{V}_{\text{IN}} \leq 25 \text{ V}$					mA
V _N	Output noise voltage	T _A = 25°C, 10 Hz	≤ f ≤ 100 kHz		40		μV
ΔV_{IN}		f = 120 Hz	$T_J = 25^{\circ}C, , I_O = 1 A$	68	80		dB
ΔV _{OUT}	Ripple rejection		Over temperature, I _O = 500 mA	68			dB
	Dropout voltage	$T_{\rm J} = 25^{\circ}C, I_{\rm O} = 1$	A		2		V
	Output resistance	f = 1 kHz			8		mΩ
Ro	Short-circuit current	$T_J = 25^{\circ}C$			2.1		А
	Peak output current	$T_J = 25^{\circ}C$			2.4		А
	Average TC of Vo	Min, $T_J = 0^{\circ}C$, $I_O =$	= 5 mA		-0.6		mV/°C
V _{IN}	Input voltage required to maintain line regulation	$T_J = 25^{\circ}C$		7.5			V

(1) All characteristics are measured with a 0.22-μF capacitor from input to ground and a 0.1-μF capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

Copyright © 2000–2016, Texas Instruments Incorporated

6.6 LM340 / LM7805 Electrical Characteristics, $V_0 = 5 V$, $V_1 = 10 V$

$0^{\circ}C \le T_{J} \le 125^{\circ}C$ unless otherwise specified⁽¹⁾

	PARAMETER	TES	T CONDITIONS	MIN	TYP	MAX	UNIT
		T _J = 25°C, 5 mA ≤	l ₀ ≤ 1 A	4.8	5	5.2	V
Vo	Output voltage	P _D ≤ 15 W, 5 mA ≤	I _O ≤ 1 A	4.75		5.25	V
		$7.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 20$	V				v
			$T_J = 25^{\circ}C$		3	50	
		500 4	$7V \le V_{IN} \le 25V$				mV
		I _O = 500 mA	Over temperature			50	
ΔV_{O}	l in a na sudation		$8V \le V_{IN} \le 20V$				mV
	Line regulation		$T_J = 25^{\circ}C$			50	
			$7.5V \le V_{IN} \le 20V$				mV
		I _O ≤ 1 A	Over temperature			25	
			$8V \le V_{IN} \le 12V$				mV
	Load regulation	T 05%0	5 mA ≤ I _O ≤ 1.5 A		10	50	mV
ΔV _O		$T_J = 25^{\circ}C$	250 mA ≤ I _O ≤ 750 mA			25	mV
		Over temperature, 5 mA $\leq I_0 \leq 1$ A				50	mV
			$T_J = 25^{\circ}C$			8	mA
lα	Quiescent current	I _O ≤ 1 A	Over temperature			8.5	mA
	Quiescent current change	0°C ≤ T _J ≤ 125°C, 5	$5 \text{ mA} \le I_0 \le 1 \text{ A}$		0.5		mA
Δl _Q		nange $7 V \le V_{IN} \le 20 V$	$T_J = 25^{\circ}C, I_O \le 1 A$			1	mA
ΔiQ			Over temperature, $I_0 \le 500$ mA			1	mA
V _N	Output noise voltage	T _A = 25°C, 10 Hz ≤	f ≤ 100 kHz		40		μV
ΔV_{IN}		f = 120 Hz	$T_J = 25^{\circ}C, I_O \le 1 A$	62	80		dB
ΔV _{OUT}	Ripple rejection	$8 \text{ V} \leq \text{V}_{\text{IN}} \leq 18 \text{ V}$	Over temperature, $I_0 \le 500$ mA	62			dB
	Dropout voltage	T _J = 25°C, I _O = 1 A	•		2		V
	Output resistance	f = 1 kHz			8		mΩ
Ro	Short-circuit current	T _J = 25°C			2.1		А
	Peak output current	T _J = 25°C			2.4		А
	Average TC of V _{OUT}	Over temperature, $I_{\Omega} = 5 \text{ mA}$			-0.6		mV/°C
V _{IN}	Input voltage required to maintain line regulation	$T_J = 25^{\circ}C, I_O \le 1 \text{ A}$		7.5			V

(1) All characteristics are measured with a 0.22-μF capacitor from input to ground and a 0.1-μF capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

6

www.ti.com

6.7 LM340 / LM7812 Electrical Characteristics,

$V_0 = 12 V, V_1 = 19 V$

 $0^{\circ}C \leq T_{J} \leq 125^{\circ}C$ unless otherwise specified $^{(1)}$

	PARAMETER	TEST	T CONDITIONS	MIN	TYP	MAX	UNIT
	Output voltage	$T_J = 25^{\circ}C$, 5 mA $\leq I_O \leq 1$ A		11.5	12	12.5	V
Vo		$P_D \le 15 \text{ W}, 5 \text{ mA} \le I_O \le 1 \text{ A}$		11.4		12.6	V
		$14.5 \ V \leq V_IN \leq 27$	V				v
			$T_J = 25^{\circ}C$		4	120	
		I _O = 500 mA	$14.5V \le V_{IN} \le 30V$				mV
		$I_0 = 500 \text{ IIIA}$	Over temperature			120	mV
۵۷ ₀ ۵۷ ₀	Line regulation		$15V \le V_{IN} \le 27V$				mv
Δv _o			$T_J = 25^{\circ}C$			120	mV
		I _O ≤ 1 A	$14.6V \le V_{IN} \le 27V$				mv
		1 ₀ ≤ 1 A	Over temperature			60	mV
			$16V \le V_{IN} \le 22V$				IIIV
		T, = 25°C	5 mA ≤ I _O ≤ 1.5 A		12	120	mV
ΔV _O	Load regulation	1 _J = 25 C	250 mA ≤ I_0 ≤ 750 mA			60	mV
		Over temperature, 5 mA $\leq I_0 \leq 1$ A				120	mV
	Quiescent current	I _O ≤ 1 A	$T_J = 25^{\circ}C$			8	mA
la		1 ₀ ≤ 1 A	Over temperature			8.5	mA
		5 mA ≤ I _O ≤ 1 A			0.5		mA
		$T_J = 25^{\circ}C, I_O \le 1 A$				1	mA
Δl _Q	Quiescent current change	14.8 V \leq V _{IN} \leq 27 V					mA
		Over temperature, I _O ≤ 500 mA				1	
		$14.5 \text{ V} \leq \text{V}_{IN} \leq 30 \text{ V}$					mA
V _N	Output noise voltage	T _A = 25°C, 10 Hz ≤	f ≤ 100 kHz		75		μV
ΔV_{IN}		f = 120 Hz	$T_J = 25^{\circ}C, I_O \le 1 \text{ A}$	55	72		dB
ΔV _{OUT}	Ripple rejection	$\begin{array}{l} 15 \hspace{.1cm} V \hspace{.1cm} \leq \hspace{.1cm} V_{\rm IN} \hspace{.1cm} \leq \hspace{.1cm} 25 \\ V \end{array}$	Over temperature, $I_0 \le 500$ mA,	55			dB
	Dropout voltage	$T_{\rm J} = 25^{\circ}C, I_{\rm O} = 1 \text{ A}$			2		V
	Output resistance	f = 1 kHz			18		mΩ
Ro	Short-circuit current	$T_J = 25^{\circ}C$			1.5		А
	Peak output current	$T_J = 25^{\circ}C$			2.4		А
	Average TC of V _{OUT}	Over temperature, I _O = 5 mA			-1.5		mV/°C
V _{IN}	Input voltage required to maintain line regulation	T _J = 25°C, I _O ≤ 1 A		14.6			V

(1) All characteristics are measured with a 0.22-μF capacitor from input to ground and a 0.1-μF capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

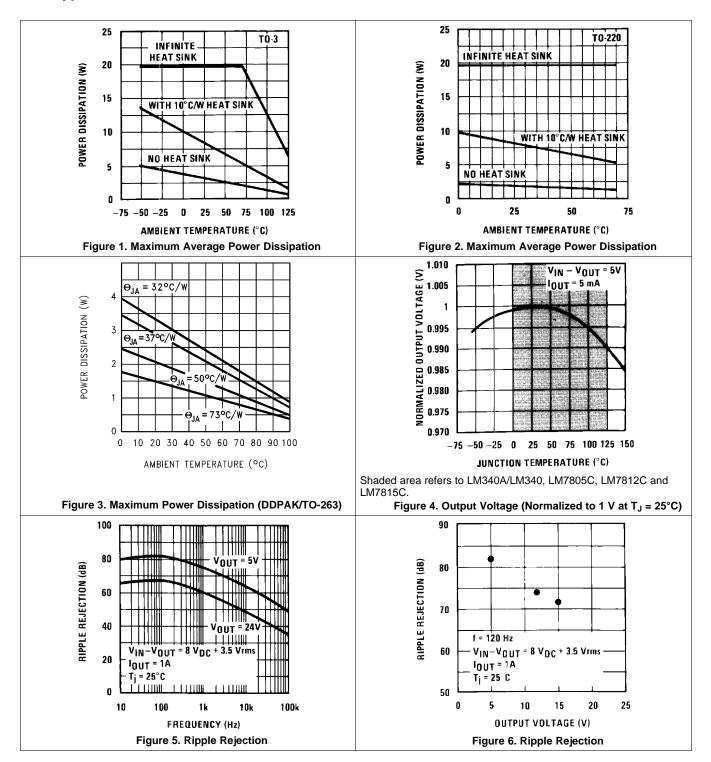
6.8 LM340 / LM7815 Electrical Characteristics, $V_0 = 15 V$, $V_1 = 23 V$

 $0^{\circ}C \leq T_{\rm J} \leq 125^{\circ}C$ unless otherwise specified $^{(1)}$

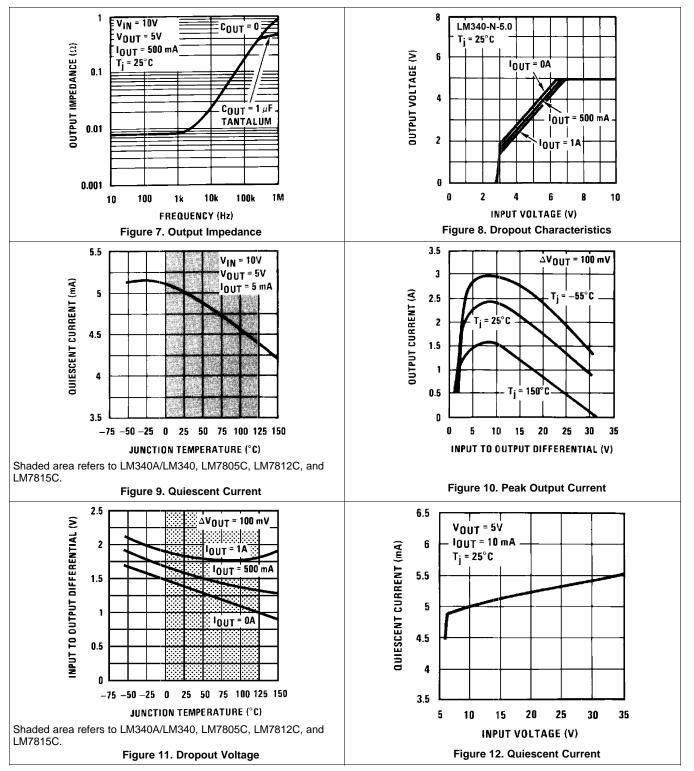
	PARAMETER	TES	CONDITIONS	MIN	TYP	MAX	UNIT	
		T _J = 25°C, 5 mA ≤ I ₀	⊃≤1A	14.4	15	15.6	V	
Vo	Output voltage	P _D ≤ 15 W, 5 mA ≤	₀ ≤1 A	14.25		15.75		
		17.5 V ≤ V _{IN} ≤ 30	V				V	
			$T_J = 25^{\circ}C$		4	150		
		L 500 mA	$17.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 30 \text{ V}$				mV	
		I _O = 500 mA	Over temperature			150	0 mV	
	Line of whether		$18.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 30 \text{ V}$					
ΔV _O	Line regulation		$T_J = 25^{\circ}C$			150	mV 5	
			$17.7 \text{ V} \leq \text{V}_{\text{IN}} \leq 30 \text{ V}$					
		I _O ≤ 1 A	Over temperature			75		
			$20 \text{ V} \leq \text{V}_{IN} \leq 26 \text{ V}$				mV	
ΔV _O Lo		T 25%0	5 mA ≤ I _O ≤ 1.5 A		12	150	mV	
	Load regulation	$T_J = 25^{\circ}C$	250 mA ≤ I _O ≤ 750 mA			75	mV	
		Over temperature, 5	$mA \le I_0 \le 1 A$,			150	mV	
Ι _Q	Onissent summert		$T_J = 25^{\circ}C$			8	mA	
	Quiescent current	I _O ≤ 1 A	Over temperature			8.5	mA	
		5 mA ≤ I _O ≤ 1 A			0.5		mA	
	Quiescent current change	$T_J = 25^{\circ}C, I_O \le 1 A$			1			
Δl _Q		17.9 V ≤ V _{IN} ≤ 30	V				mA	
		Over temperature, I	_D ≤ 500 mA		1			
		17.5 V ≤ V _{IN} ≤ 30	V				mA	
V _N	Output noise voltage	T _A = 25°C, 10 Hz ≤	f ≤ 100 kHz		90		μV	
ΔV_{IN}		f = 120 Hz	$T_J = 25^{\circ}C, I_O \le 1 A$	54	70		dB	
ΔV _{OUT}	Ripple rejection	18.5 V \leq V _{IN} \leq 28.5 V	Over temperature, $I_0 \le 500$ mA,	54			dB	
	Dropout voltage	T _J = 25°C, I _O = 1 A			2		V	
	Output resistance	f = 1 kHz			19		mΩ	
Ro	Short-circuit current	T _J = 25°C			1.2		А	
	Peak output current	$T_J = 25^{\circ}C$			2.4		А	
	Average TC of V _{OUT}	Over temperature, I	_D = 5 mA		-1.8		mV/°C	
V _{IN}	Input voltage required to maintain line regulation	$T_J = 25^{\circ}C, I_O \le 1 \text{ A}$		17.7			V	

(1) All characteristics are measured with a 0.22-μF capacitor from input to ground and a 0.1-μF capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

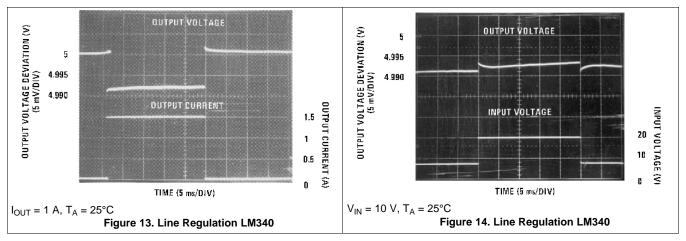
www.ti.com


STRUMENTS

EXAS

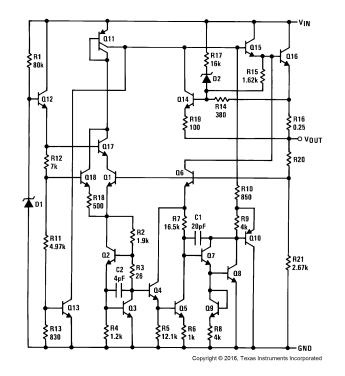

8

6.9 Typical Characteristics



Typical Characteristics (continued)

Typical Characteristics (continued)



7 Detailed Description

7.1 Overview

The LM340 and LM78xx are a family of fixed output positive voltage regulators with outputs ranging from 3 V to 15 V. They accept up to 35 V of input voltage and with proper heat dissipation can provide over 1.5 A of current. With a combination of current limiting, thermal shutdown, and safe area protection, these regulators eliminate any concern of damage. These features paired with excellent line and load regulation make the LM340 and LM78xx versatile solutions to a wide range of power management designs. Although the LM340N and LM78xx were designed primarily as fixed-voltage regulators, these devices can be used with external component for adjustable voltage and current.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Output Current

With proper considerations, the LM340 and LM78xx can exceed 1.5-A output current. Depending on the desired package option, the effective junction-to-ambient thermal resistance can be reduced through heat sinking, allowing more power to be dissipated in the device.

7.3.2 Current Limiting Feature

In the event of a short circuit at the output of the regulator, each device has an internal current limit to protect it from damage. The typical current limits for the LM340 and LM78xx is 2.4 A.

7.3.3 Thermal Shutdown

Each package type employs internal current limiting and thermal shutdown to provide safe operation area protection. If the junction temperature is allowed to rise to 150°C, the device will go into thermal shutdown.

7.4 Device Functional Modes

There are no functional modes for this device.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

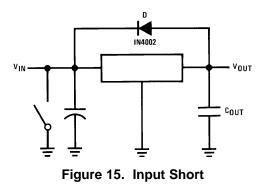
8.1 Application Information

The LM340x and LM78xx series is designed with thermal protection, output short-circuit protection, and output transistor safe area protection. However, as with any IC regulator, it becomes necessary to take precautions to assure that the regulator is not inadvertently damaged. The following describes possible misapplications and methods to prevent damage to the regulator.

8.1.1 Shorting the Regulator Input

When using large capacitors at the output of these regulators, a protection diode connected input to output (Figure 15) may be required if the input is shorted to ground. Without the protection diode, an input short causes the input to rapidly approach ground potential, while the output remains near the initial V_{OUT} because of the stored charge in the large output capacitor. The capacitor will then discharge through a large internal input to output diode and parasitic transistors. If the energy released by the capacitor is large enough, this diode, low current metal, and the regulator are destroyed. The fast diode in Figure 15 shunts most of the capacitors discharge current around the regulator. Generally no protection diode is required for values of output capacitance $\leq 10 \ \mu\text{F}$.

8.1.2 Raising the Output Voltage Above the Input Voltage


Because the output of the device does not sink current, forcing the output high can cause damage to internal low current paths in a manner similar to that just described in *Shorting the Regulator Input*.

8.1.3 Regulator Floating Ground

When the ground pin alone becomes disconnected, the output approaches the unregulated input, causing possible damage to other circuits connected to V_{OUT} . If ground is reconnected with power ON, damage may also occur to the regulator. This fault is most likely to occur when plugging in regulators or modules with on card regulators into powered up sockets. The power must be turned off first, the thermal limit ceases operating, or the ground must be connected first if power must be left on. See Figure 16.

8.1.4 Transient Voltages

If transients exceed the maximum rated input voltage of the device, or reach more than 0.8 V below ground and have sufficient energy, they will damage the regulator. The solution is to use a large input capacitor, a series input breakdown diode, a choke, a transient suppressor or a combination of these.

Application Information (continued)

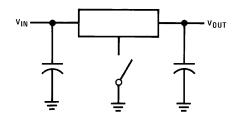


Figure 16. Regulator Floating Ground

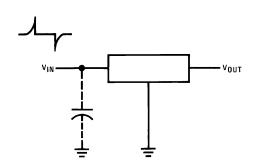
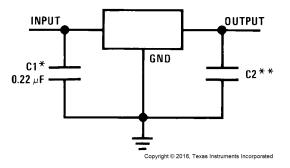


Figure 17. Transients


When a value for $\theta_{(H-A)}$ is found, a heat sink must be selected that has a value that is less than or equal to this number.

 $\theta_{(H-A)}$ is specified numerically by the heat sink manufacturer in this catalog or shown in a curve that plots temperature rise vs power dissipation for the heat sink.

8.2 Typical Applications

8.2.1 Fixed Output Voltage Regulator

The LM340x and LM78xx devices are primarily designed to provide fixed output voltage regulation. The simplest implementation of LM340x and LM78xx is shown in Figure 18.

*Required if the regulator is located far from the power supply filter.
**Although no output capacitor is needed for stability, it does help transient response. (If needed, use 0.1-µF, ceramic disc).

Figure 18. Fixed Output Voltage Regulator

8.2.1.1 Design Requirements

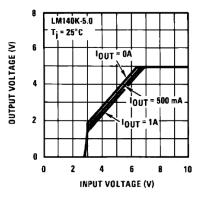
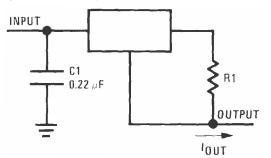
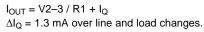
The device component count is very minimal. Although not required, TI recommends employing bypass capacitors at the output for optimum stability and transient response. These capacitors must be placed as close as possible to the regulator. If the device is located more than 6 inches from the power supply filter, it is required to employ input capacitor.

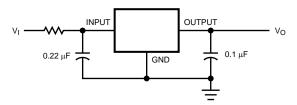
Typical Applications (continued)

8.2.1.2 Detailed Design Procedure

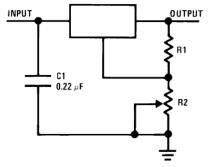
The output voltage is set based on the device variant. LM340x and LM78xx are available in 5-V, 12-V and 15-V regulator options.

8.2.1.3 Application Curve


Figure 19. V_{OUT} vs V_{IN} , V_{OUT} = 5 V

8.3 System Examples



$$\begin{split} V_{OUT} &= 5 \ V + (5 \ V/R1 + I_Q) \ R2 \ 5 \ V/R1 > 3 \ I_Q, \\ \text{load regulation } (L_r) &\approx [(R1 + R2)/R1] \ (L_r \ \text{of LM340-5}). \end{split}$$

Figure 21. Adjustable Output Regulator

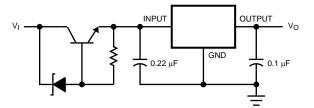
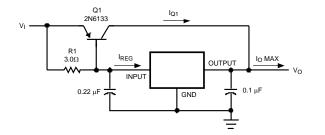
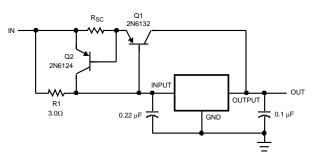




Figure 23. High Input Voltage Circuit implementation With Transistor

System Examples (continued)

 $\begin{aligned} \mathsf{R}_{SC} &= 0.8 \ / \ \mathsf{I}_{SC} \\ \mathsf{R1} &= \beta \mathsf{V}_{\mathsf{BE}(\mathsf{Q1})} \ / \ \mathsf{I}_{\mathsf{REG}} \ \mathsf{Max} \ (\beta + 1) - \mathsf{I}_{\mathsf{O}} \ \mathsf{Max} \end{aligned}$

Figure 25. High Output Current With Short-Circuit Protection

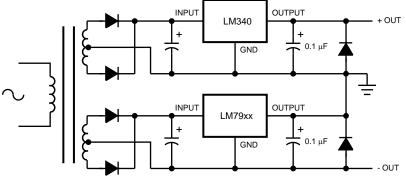


Figure 26. LM340 Used With Negative Regulator LM79xx

9 Power Supply Recommendations

The LM340 is designed to operate from a wide input voltage up to 35 V. Please refer to electrical characteristics tables for the minimum input voltage required for line/load regulation. If the device is more than six inches from the input filter capacitors, an input bypass capacitor, 0.1 μ F or greater, of any type is needed for stability.

10 Layout

10.1 Layout Guidelines

Some layout guidelines must be followed to ensure proper regulation of the output voltage with minimum noise. Traces carrying the load current must be wide to reduce the amount of parasitic trace inductance. To improve PSRR, a bypass capacitor can be placed at the OUTPUT pin and must be placed as close as possible to the IC. All that is required for the typical fixed output regulator application circuit is the LM340x/LM78xx IC and a 0.22-µF input capacitor if the regulator is placed far from the power supply filter. A 0.1-µF output capacitor is recommended to help with transient response. In cases when VIN shorts to ground, an external diode must be placed from VOUT to VIN to divert the surge current from the output capacitor and protect the IC.

10.2 Layout Example

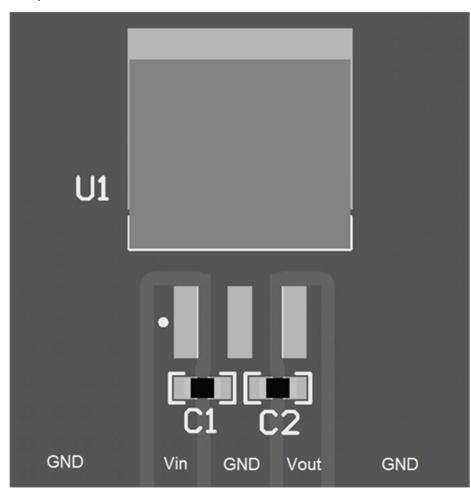
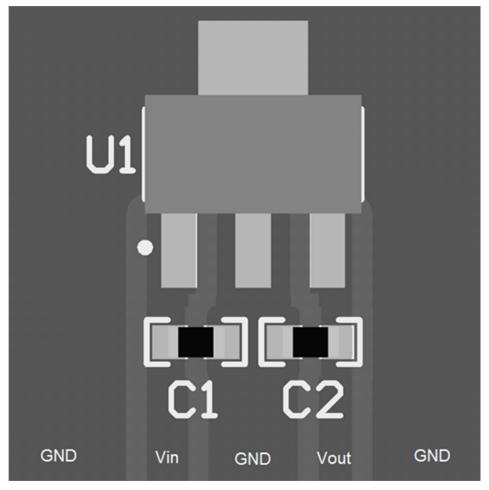
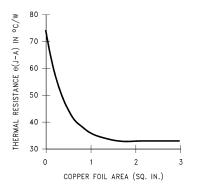
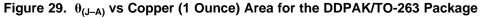


Figure 27. Layout Example DDPAK

Layout Example (continued)


Figure 28. Layout Example SOT-223

10.3 Heat Sinking DDPAK/TO-263 and SOT-223 Package Parts

Both the DDPAK/TO-263 (KTT) and SOT-223 (DCY) packages use a copper plane on the PCB and the PCB itself as a heat sink. To optimize the heat sinking ability of the plane and PCB, solder the tab of the plane.

Figure 29 shows for the DDPAK/TO-263 the measured values of $\theta_{(J-A)}$ for different copper area sizes using a typical PCB with 1-oz copper and no solder mask over the copper area used for heat sinking.

Heat Sinking DDPAK/TO-263 and SOT-223 Package Parts (continued)

As shown in Figure 29, increasing the copper area beyond 1 square inch produces very little improvement. It should also be observed that the minimum value of $\theta_{(J-A)}$ for the DDPAK/TO-263 package mounted to a PCB is 32°C/W.

As a design aid, Figure 30 shows the maximum allowable power dissipation compared to ambient temperature for the DDPAK/TO-263 device (assuming $\theta_{(J-A)}$ is 35°C/W and the maximum junction temperature is 125°C).

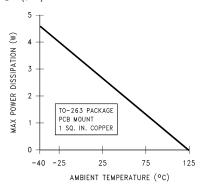
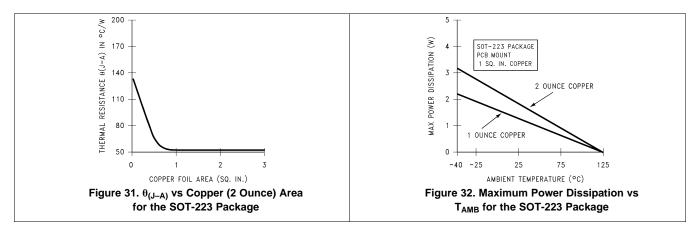



Figure 30. Maximum Power Dissipation vs T_{AMB} for the DDPAK/TO-263 Package

Figure 31 and Figure 32 show the information for the SOT-223 package. Figure 31 assumes a $\theta_{(J-A)}$ of 74°C/W for 1-oz. copper and 51°C/W for 2-oz. copper and a maximum junction temperature of 125°C.

See AN-1028 LMX2370 PLLatinum Dual Freq Synth for RF Pers Comm LMX2370 2.5GHz/1.2GHz (SNVA036) for power enhancement techniques to be used with the SOT-223 package.

TEXAS INSTRUMENTS

www.ti.com

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation, see the following:

- AN-1028 LMX2370 PLLatinum Dual Freq Synth for RF Pers Comm LMX2370 2.5GHz/1.2GHz (SNVA036)
- LM140K Series 3-Terminal Positive Regulators (SNVS994)

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM340	Click here	Click here	Click here	Click here	Click here
LM340A	Click here	Click here	Click here	Click here	Click here
LM7805	Click here	Click here	Click here	Click here	Click here
LM7812	Click here	Click here	Click here	Click here	Click here
LM7815	Click here	Click here	Click here	Click here	Click here

Table 1. Related Links

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

3-Aug-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins			Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM340AT-5.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 70	LM340AT 5.0 P+	
LM340AT-5.0/NOPB	ACTIVE	TO-220	NDE	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-1-NA-UNLIM	0 to 125	LM340AT 5.0 P+	Samples
LM340K-5.0	ACTIVE	TO-3	NDS	2	50	TBD	Call TI	Call TI	0 to 125	LM340K -5.0 7805P+	Samples
LM340K-5.0/NOPB	ACTIVE	TO-3	NDS	2	50	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	0 to 125	LM340K -5.0 7805P+	Samples
LM340MP-5.0	NRND	SOT-223	DCY	4	1000	TBD	Call TI	Call TI	0 to 70	N00A	
LM340MP-5.0/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	NOOA	Samples
LM340MPX-5.0/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	NOOA	Samples
LM340S-12/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -12 P+	Samples
LM340S-5.0	NRND	DDPAK/ TO-263	КТТ	3	45	TBD	Call TI	Call TI	0 to 70	LM340S -5.0 P+	
LM340S-5.0/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -5.0 P+	Samples
LM340SX-12/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -12 P+	Samples
LM340SX-5.0	NRND	DDPAK/ TO-263	КТТ	3	500	TBD	Call TI	Call TI	0 to 70	LM340S -5.0 P+	
LM340SX-5.0/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -5.0 P+	Samples
LM340T-12	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 70	LM340T12 7812 P+	
LM340T-12/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM340T12 7812 P+	Samples
LM340T-15	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 70	LM340T15 7815 P+	
LM340T-15/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM340T15 7815 P+	Samples
LM340T-5.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 70	LM340T5	

PACKAGE OPTION ADDENDUM

3-Aug-2016

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
										7805 P+	
LM340T-5.0/LF01	ACTIVE	TO-220	NDG	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-4-260C-72 HR	0 to 125	LM340T5 7805 P+	Samples
LM340T-5.0/NOPB	ACTIVE	TO-220	NDE	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-1-NA-UNLIM	0 to 125	LM340T5 7805 P+	Samples
LM7805CT	ACTIVE	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 125	LM340T5 7805 P+	Samples
LM7805CT/NOPB	ACTIVE	TO-220	NDE	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-1-NA-UNLIM	0 to 125	LM340T5 7805 P+	Samples
LM7805MP/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	NOOA	Samples
LM7805MPX/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N00A	Samples
LM7805S/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -5.0 P+	Samples
LM7805SX/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -5.0 P+	Samples
LM7812CT/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM340T12 7812 P+	Samples
LM7812S/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -12 P+	Samples
LM7812SX/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM340S -12 P+	Samples
LM7815CT/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM340T15 7815 P+	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

PACKAGE OPTION ADDENDUM

3-Aug-2016

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

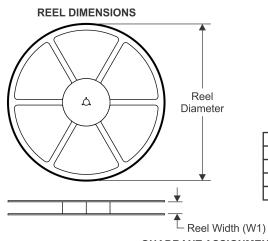
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

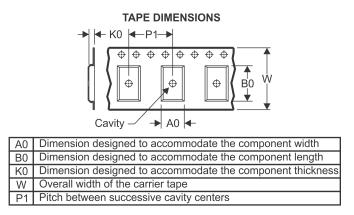
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

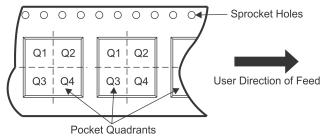
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

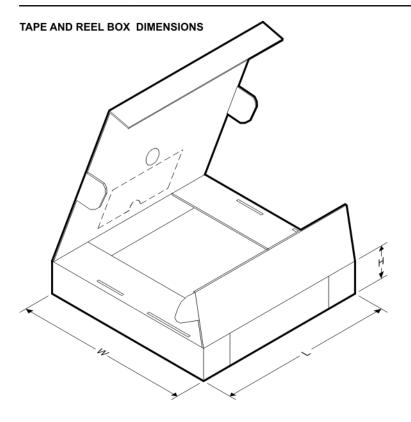

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

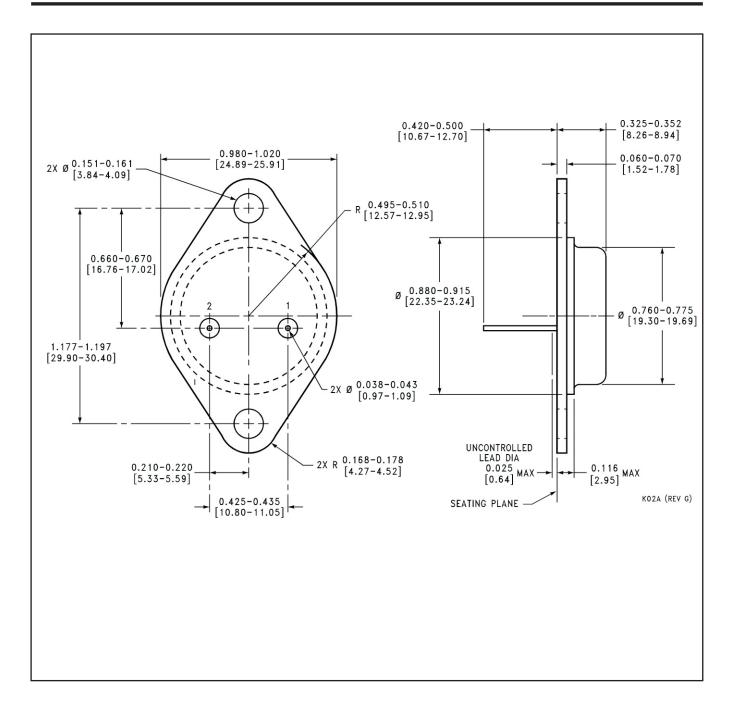
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM340MP-5.0	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM340MP-5.0/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM340MPX-5.0/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM340SX-12/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM340SX-5.0	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM340SX-5.0/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

TEXAS INSTRUMENTS

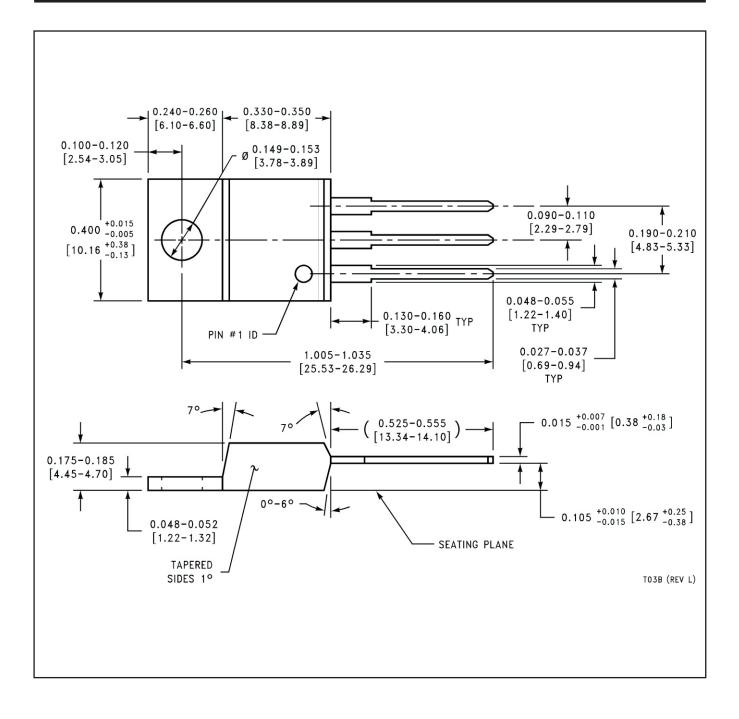
www.ti.com

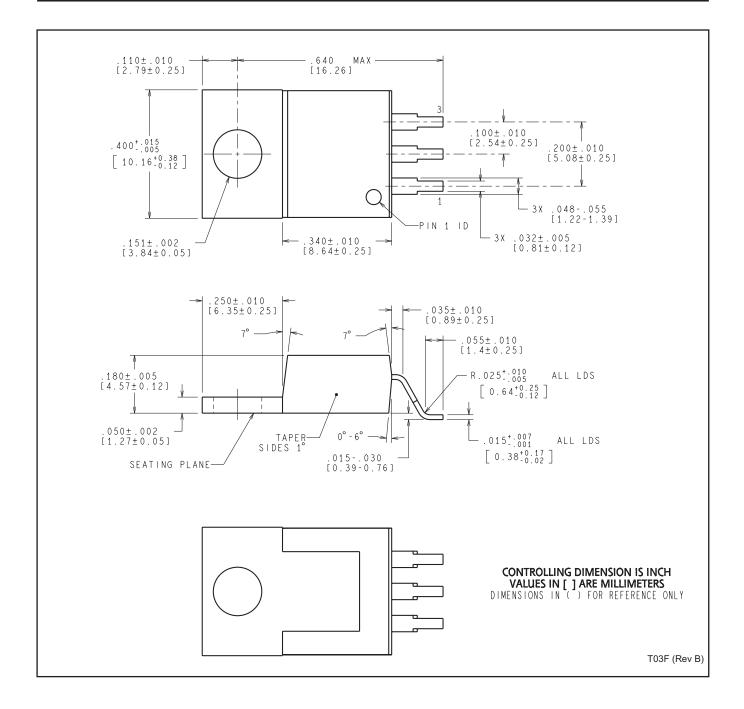
PACKAGE MATERIALS INFORMATION


3-Nov-2015

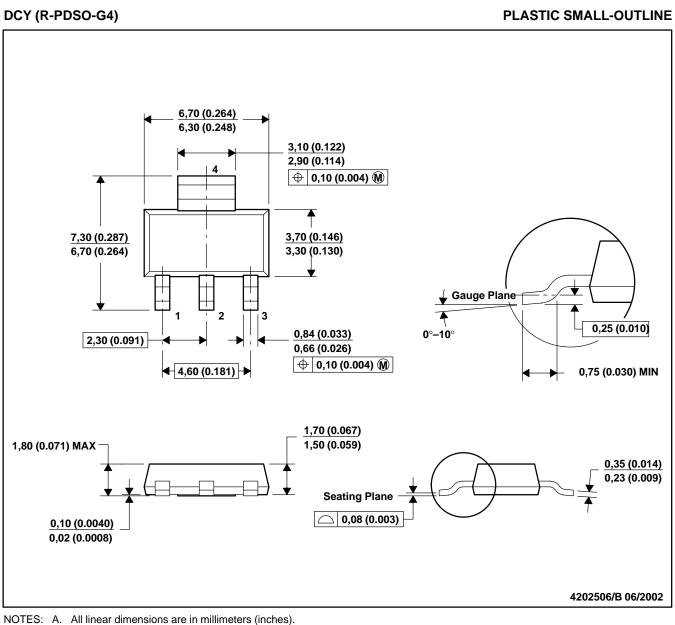
*All dimensions are nominal

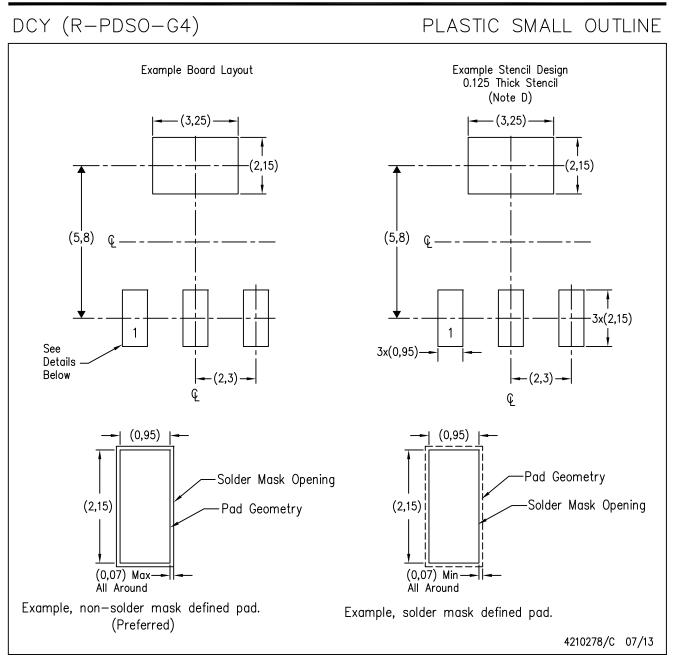
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM340MP-5.0	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM340MP-5.0/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM340MPX-5.0/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM340SX-12/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM340SX-5.0	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LM340SX-5.0/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0


NDS0002A


MECHANICAL DATA

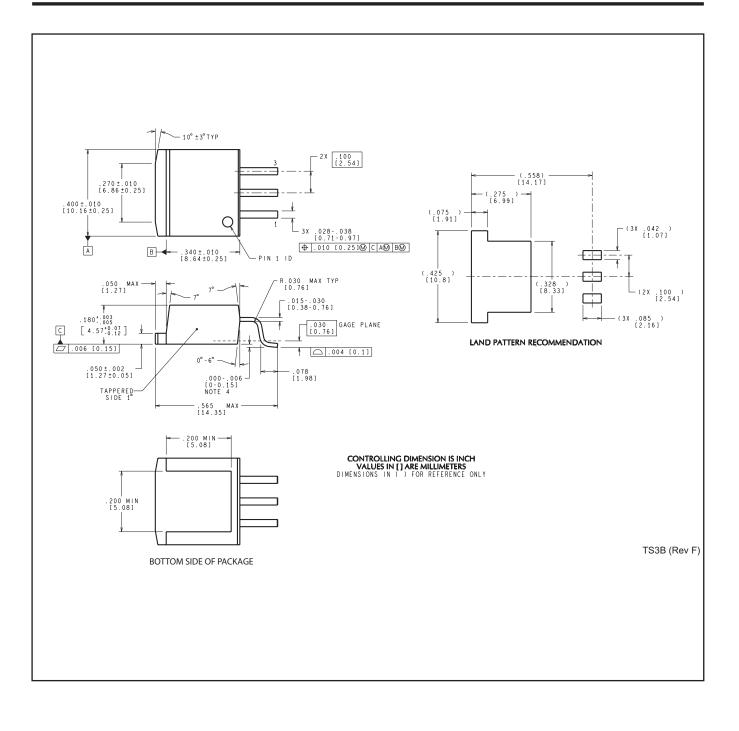
NDE0003B


NDG0003F


MECHANICAL DATA

MPDS094A - APRIL 2001 - REVISED JUNE 2002

- B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion.
 - D. Falls within JEDEC TO-261 Variation AA.



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil recommendations. Refer to IPC 7525 for stencil design considerations.

MECHANICAL DATA

KTT0003B

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated