TDA2822M Dual Low-Voltage Power Amplifier

TThe TDA2822M is a monolithic integrated circuit in 8 lead Minidip package. It is intended for use as dual audio power amplifier in portable cassette player and radios.

Features

- Supply Voltage Down to 1.8 V
- Low Crossover Distorsion
- Low Quiescent Current
- Bridge or Stereo Configuration

Absolnte Maximum Ratings

Symbol	Parameter	Value	Unite
Vs	Supply Voltage	16	V
Io	Peak Output Current	1	A
Ptot	Total Power Dissipation at Tamb $=50^{\circ} \mathrm{C}$	1	W
	Tcase $=50^{\circ} \mathrm{C}$	1.4	W
Tstg,Tj	Storage and Junction Temperature	$-40,+150$	${ }^{\circ} \mathrm{C}$

Thermal Data

Symbol	Parameter	Value	Unite	
Rthj-amb	Thermal Resistance Junction-ambient	Max.	100	${ }^{\circ}$ C/W
Rthj-case	Thermal Resistance Junction-pin(4)	Max.	70	${ }^{\circ}$ C/W

TDA2822M Dual Low-Voltage Power Amplifier

Electrical Characteristics(Vs $=6 \mathrm{~V}, \mathrm{Tamb}=25^{\circ}$ C.unless atherwise specified)

Symbol	Paramete	Test Conditions	Min.	Typ.	Mex.	Unit
STEREO(test circuit of Figure 1)						
V_{s}	Suppy Voltage		1.8		15	V
Vo	Quiescent Ouput Voltage	Vs=3V		$\begin{aligned} & 2.7 \\ & 1.2 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Id	Quiescent Drain Current			6	9	mA
Ib	Input Bias Current			100		nA
Po	Outut Power (each channel)$(f=1 \mathrm{KHz}, \mathrm{~d}=10 \%)$	$\mathrm{R}_{\mathrm{L}}=32 \Omega \quad \mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V}$		300		mW
		Vs=6V	90	120		
		$\mathrm{Vs}=4.5 \mathrm{~V}$		60		
		$\mathrm{V}=3 \mathrm{~V}$	15	20		
		$\mathrm{V}=2 \mathrm{~V}$		5		
		$\mathrm{R}_{\mathrm{L}}=16 \Omega \quad \mathrm{~V}=6 \mathrm{~V}$	170	220		
		$\mathrm{R}_{\mathrm{L}}=8 \Omega \quad \mathrm{~V}=9 \mathrm{~V}$		1000		
			300	380		
		$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{~V}=6 \mathrm{~V}$	450	650		
		R ${ }^{\text {Vs }}=4.5 \mathrm{~V}$		320		
		$\mathrm{Vs}=3 \mathrm{~V}$		110		
d	Distortion(f=1KHz)	$\mathrm{R}_{\mathrm{L}}=32 \mathrm{n} \quad \mathrm{Po}=40 \mathrm{~mW}$		0.2		
		$\mathrm{R}_{\mathrm{L}}=16 \Omega \quad \mathrm{P}=75 \mathrm{~mW}$		0.2		\%
		$\mathrm{R}_{\mathrm{L}}=8 \Omega \quad \mathrm{P}_{0}=150 \mathrm{~mW}$		0.2		\%
Gv	Close Loop Voltage Gain	$\mathrm{f}=1 \mathrm{KHz}$	36	39	41	dB
\triangle Gv	Chantel Balance				± 1	dB
Ri	Input Resistance	$\mathrm{f}=1 \mathrm{KHz}$	100			$\mathrm{K} \Omega$
$\theta \mathrm{N}$	Total Input Noise	$\begin{aligned} \mathrm{Rs}=10 \mathrm{~K} \Omega & \mathrm{~B}=\mathrm{Curve} \mathrm{~A} \\ & \mathrm{~B}=22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \end{aligned}$		22		$\mu \mathrm{V}$ μ
SVR	Supply Voltage Rejection	$\mathrm{f}=100 \mathrm{~Hz}, \mathrm{Cl}=\mathrm{C} 2=100 \mu \mathrm{~F}$		24	30	dB
Cs	Channel Separation	$\mathrm{f}=1 \mathrm{KHz}$			50	dB

BRIDGE(test circuit of Figure 2)

Vs	Supply Voltage		1.8		15	V
Id	Quiescent Drain Current	$\mathrm{R}_{\mathrm{L}}=\infty$				
Vos	Output Offset Voltage (between the outputs)	$\mathrm{R}_{\mathrm{L}}=8 \Omega$				
10	Input Bias Current					
Po	Output Bias Current		320 50 900 200	$\begin{gathered} \hline 1000 \\ 400 \\ 200 \\ 65 \\ 8 \\ 2000 \\ 800 \\ 120 \\ 1350 \\ 700 \\ 220 \\ 1000 \\ 350 \\ 80 \\ \hline \end{gathered}$		mW
d	Outpu Power ($\mathrm{f}=1 \mathrm{KHz}, \mathrm{d}=10 \%$)	$\mathrm{P} 0=0.5 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{f}=1 \mathrm{KHz}$		0.2		\%
Gv	Closed Loop Voltage Gain	$\mathrm{f}=1 \mathrm{KHz}$		39		dB
Ri	Input Resistance	$\mathrm{f}=1 \mathrm{KH} 2$	100			$\mathrm{K} \Omega$
${ }^{\text {en }}$	Total Input Noise			$\begin{gathered} 2.5 \\ 3 \\ \hline \end{gathered}$		$\mu \mathrm{V}$ $\mu \mathrm{V}$
SVR	Supply Voltage Rejection	$\mathrm{f}=100 \mathrm{~Hz}$		40		dB
B	Power Bandwidth (-3dB)	$\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{P} 0=1 \mathrm{~W}$		120		KHz

TDA2822M Dual Low-Voltage Power Amplifier

Schematic Diagram

Figure 1:Test Circuit(Stereo)

Figure 3.Typical Application in Portable Players

TDA2822M Dual Low-Voltage Power Amplifier

Figure 4.Application in Portable Radio Receivers

Figure 5.Portable Radio Cassette Players

Type	Supply Voltaqe
TDA7220	1.5 V to 6 V
TDA7221A	1.2 V to 6 V
TEA1330	3 V to 15 V
TDA7282	1.5 V to 6 V
TDA2822A	1.8 V to 15 V

TDA2822M Dual Low-Voltage Power Amplifier

Figure 6.Portable Stereo Radio

Type	Supply Voltage
TDA7220	1.5 V to 6 V
TDA7221A	1.2 V to 6 V
TEA1330	3 V to 15 V
TDA2822A	1.8 V to 15 V

Figure 7.Low Cose Application in Portable Players(using oniv one 100_{u} F output capacitor)

TDA2822M Dual Low-Voltage Power Amplifier

Figure 8.3V Stereo Cassette Player with Motor Speed Control

TDA2822M Dual Low-Voltage Power Amplifier

Figure 9.Quiescent Current versus Supply Voltage

Figure 11.Output Power versus Supply Voltage (THD $=10 \%, f=1 \mathrm{KHz}$ Stereo)

Figure 13.Distorsion versus Output Power (Stereo)

Figure 10.Supply Voltage Rejection versus Frequency

Figure 12.Distorsion versus Outpat Power (Stereo)

Figure 14.Output Power versus Supply Voltage (Bridge)

TDA2822M Dual Low-Voltage Power Amplifier

-

Figure 15.Distorsion versus Output Power (Bridge)

Figure 17.Total Power Dissipation versus Outpat Power(Bridge)

Figure 19.Total Power Dissipation versus Output Power(Bridge)

Figure 16.Total Power Dissipation versus Output Power (Bridge)

Figure 18.Total Power Dissipation versus Output Power(Bridge)

